33 research outputs found

    Nonlinear dual-comb spectroscopy

    Get PDF

    Nonlinear dual-comb spectroscopy

    Get PDF

    Broadband coherent Raman scattering spectroscopy at 50,000,000 spectra/s

    Full text link
    Raman scattering spectroscopy is widely used as an analytical technique in various fields, but its measurement process tends to be slow due to the low scattering cross-section. In the last decade, various broadband coherent Raman scattering spectroscopy techniques have been developed to address this limitation, achieving a measurement rate of about 100 kSpectra/s. Here, we present a significantly increased measurement rate of 50 MSpectra/s, which is 500 times higher than the previous state-of-the-art, by developing time-stretch coherent Raman scattering spectroscopy. Our newly-developed system, based on a mode-locked Yb fiber laser, enables highly-efficient broadband excitation of molecular vibrations via impulsive stimulated Raman scattering with an ultrashort femtosecond pulse and sensitive time-stretch detection with a picosecond probe pulse at a high repetition rate of the laser. As a proof-of-concept demonstration, we measure broadband coherent Stokes Raman scattering spectra of organic compounds covering the molecular fingerprint region from 200 to 1,200 cm-1. This high-speed broadband vibrational spectroscopy technique holds promise for unprecedented measurements of sub-microsecond dynamics of irreversible phenomena and extremely high-throughput measurements

    Coherent Raman spectro-imaging with laser frequency combs

    Full text link
    Optical spectroscopy and imaging of microscopic samples have opened up a wide range of applications throughout the physical, chemical, and biological sciences. High chemical specificity may be achieved by directly interrogating the fundamental or low-lying vibrational energy levels of the compound molecules. Amongst the available prevailing label-free techniques, coherent Raman scattering has the distinguishing features of high spatial resolution down to 200 nm and three-dimensional sectioning. However, combining fast imaging speed and identification of multiple - and possibly unexpected- compounds remains challenging: existing high spectral resolution schemes require long measurement times to achieve broad spectral spans. Here we overcome this difficulty and introduce a novel concept of coherent anti-Stokes Raman scattering (CARS) spectro-imaging with two laser frequency combs. We illustrate the power of our technique with high resolution (4 cm-1) Raman spectra spanning more than 1200 cm-1 recorded within less than 15 microseconds. Furthermore, hyperspectral images combining high spectral (10 cm-1) and spatial (2 micrometers) resolutions are acquired at a rate of 50 pixels per second. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy.Comment: 8 pages, 3 figure
    corecore